Visual adaptation reveals asymmetric spatial frequency tuning for motion.

نویسندگان

  • Timothy Ledgeway
  • Claire V Hutchinson
چکیده

This study investigated the spatial frequency selectivity of the human visual motion system using the technique of adaptation in which motion aftereffect (MAE) duration was taken as an index of aftereffect magnitude. Eight observers adapted to two vertically oriented, oppositely drifting, luminance-defined gratings that were spatially separated in the vertical dimension. The spatial frequency of the adaptation patterns spanned a 3-octave range (0.25 to 2 c/deg) and drifted at 5 Hz. Following adaptation (20 s), two stationary test patterns were presented and MAE duration was measured. The spatial frequency difference between the adaptation and test patterns was varied from -2.5 to 2.5 octaves in 0.5 octave steps. MAE tuning functions at the lowest adaptation frequency (0.25 c/deg) were bandpass and reasonably symmetric. However, as the spatial frequency of the adaptation patterns increased, overall MAE duration decreased and the shape of the tuning functions became markedly asymmetric. This asymmetry was characterized by a MAE peak that was centered approximately 1 octave below the adaptation frequency. The results are consistent with recent masking studies (C. V. Hutchinson & T. Ledgeway, 2007) and may reflect either asymmetric spatial frequency selectivity of underlying motion units or frequency-specific interactions (e.g. inhibition) between motion sensors tuned to different spatial frequencies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymmetric spatial frequency tuning of motion mechanisms in human vision revealed by masking.

PURPOSE To investigate the spatial frequency selectivity of the human motion system by using the technique of visual masking. METHODS Modulation-depth thresholds for identifying the direction of a sinusoidal test pattern were measured over a range of spatial frequencies (0.25-4 cyc/deg) in the absence and presence of a temporally jittering mask. RESULTS At the lowest test frequency (0.25 cy...

متن کامل

Spatial frequency selective masking of first-order and second-order motion in the absence of off-frequency `looking'

Converging evidence suggests that, at least initially, first-order (luminance defined) and second-order (e.g. contrast defined) motion are processed independently in human vision. However, adaptation studies suggest that second-order motion, like first-order motion, may be encoded by spatial frequency selective mechanisms each operating over a limited range of scales. Nonetheless, the precise p...

متن کامل

Adaptation and the temporal delay filter of fly motion detectors

Recent accounts attribute motion adaptation to a shortening of the delay filter in elementary motion detectors (EMDs). Using computer modelling and recordings from HS neurons in the drone-fly Eristalis tenax, we present evidence that challenges this theory. (i) Previous evidence for a change in the delay filter comes from 'image step' (or 'velocity impulse') experiments. We note a large discrep...

متن کامل

Adaptation in single units in visual cortex: the tuning of aftereffects in the spatial domain.

Cat striate cortical neurons were investigated using a new method of studying adaptation aftereffects. Stimuli were sinusoidal gratings of variable contrast, spatial frequency, and drift direction and rate. A series of alternating adapting and test trials was presented while recording from single units. Control trials were completely integrated with the adapted trials in these experiments. Ever...

متن کامل

Asymmetric transfer of the dynamic motion aftereffect between first- and second-order cues and among different second-order cues.

Recent work on motion processing has suggested a distinction between first-order cues (such as luminance modulation [LM]) and second-order cues (such as local contrast modulation [CM]). We studied interactions between moving LM, CM, and orientation modulation (OM) first comparing their spatial- and temporal-frequency sensitivity. We then tested for the transfer of the dynamic motion aftereffect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2009